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M I C R O B I O L O G Y

Functions predict horizontal gene transfer 
and the emergence of antibiotic resistance
Hao Zhou1, Juan Felipe Beltrán2,3, Ilana Lauren Brito3*

Phylogenetic distance, shared ecology, and genomic constraints are often cited as key drivers governing horizontal 
gene transfer (HGT), although their relative contributions are unclear. Here, we apply machine learning algorithms 
to a curated set of diverse bacterial genomes to tease apart the importance of specific functional traits on recent 
HGT events. We find that functional content accurately predicts the HGT network [area under the receiver operating 
characteristic curve (AUROC) = 0.983], and performance improves further (AUROC = 0.990) for transfers involving 
antibiotic resistance genes (ARGs), highlighting the importance of HGT machinery, niche-specific, and metabolic 
functions. We find that high-probability not-yet detected ARG transfer events are almost exclusive to human-
associated bacteria. Our approach is robust at predicting the HGT networks of pathogens, including Acinetobacter 
baumannii and Escherichia coli, as well as within localized environments, such as an individual’s gut microbiome.

INTRODUCTION
Horizontal gene transfer (HGT) is a pervasive evolutionary process 
that results in the distribution of genes between divergent prokary-
otic lineages. Although this process has shaped ancient evolution of 
microorganisms, recent transfer events underlie the spread of anti-
biotic or metal resistance genes, virulence factors, and other traits 
that have profound influence on the course of human infection. Wide-
spread sequencing of complete prokaryotic genomes has made it 
possible to perform systematic, genome-scale comparisons to iden-
tify regions of HGT within genomes and to delineate features cor-
relating with HGT rates, although these efforts have fallen short of 
being able to predict the dispersal of genes across microbes with 
high precision and accuracy.

Previous efforts to examine the mobility of genes have reported 
higher rates of HGT in phylogenetically related organisms, com-
pared with those distantly related (1), and between organisms with 
shared GC content and kmer content (2), or methylation patterns 
(3). Genome content, such as the presence of specific plasmid rep
licon and mobilization machinery or shared phage structural pro-
teins, also defines gene flow across microbial species (4–6), whereas 
restriction-modification genes, the presence of CRISPR-Cas9 adapt
ive immune systems, and toxin-antitoxin systems serve as barriers 
to gene flow. Genetic factors intrinsic to bacterial genomes or mobile 
elements favor transfer between closely related organisms due to 
their greater compatibility with native molecular machinery or larger 
stretches of sequence homology.

Alternatively, ecological architecture across various spatial scales 
also influences HGT rates, enriching HGT among organisms found 
within the same environment (e.g., marine, host-associated, and 
soil) or isolated from the same body site across multiple hosts. Many 
ecological traits are vertically inherited and therefore map onto 
physiochemical gradients or environmental resource patches (7). 
Yet, the acquisition and maintenance of mobile functional traits 
among neighbors increase the potential for ecology-specific adapta-
tion and microbial speciation (8). This environmental selection can 

be observed in the contents of mobile genetic elements in the gut 
microbiomes across populations with different diets (9) and in the 
composition of mobile antibiotic resistance genes (ARGs) within the 
microbiomes of livestock subject to differing antibiotic burdens (10). 
This suggests that proximity, in addition to compatibility, is re-
quired for HGT.

Despite the appreciation for various factors’ effects on overall 
HGT rates, it has been difficult to arrive at a holistic understanding 
of HGT that encompasses and weighs these macro- and microlevel 
selective pressures. We hypothesized that functional gene content 
would be a strong determinant of HGT, as gene content reflects 
phylogenetic, genomic, and ecological factors simultaneously. To 
test this, we leveraged publicly available genome databases to create 
a network of HGT events. The network included genome-specific 
factors, such as functional content (node features), and relative factors, 
such as phylogenetic distance and cooccurrence (edge features). We 
implemented several machine learning approaches, namely, logistic 
regression (LR), random forest (RF), and graphical convolutional 
neural network (GCN) models, to quantify their effect on HGT, 
because of their versatility, their demonstrated utility for genomics 
(11) and bacterial phenotypes (12), and their ability to predict multi-
dimensional links in networks. Furthermore, these methods allow 
us to use node and edge effects to account for the nonindependence 
of events and features in the network, which is important when 
parsing the complex etiologies of HGT events.

RESULTS
The HGT network is highly predictable
We constructed an undirected network of observed gene transfer 
events (Fig. 1A). After downloading genomes from several public 
databases, we took special care to remove any potential contaminants 
(host- or vector-borne) that could be erroneously annotated as HGT 
among these genomes and any genomes that had low completeness 
(<90%) or high contamination scores (>5%), as determined by 
CheckM (13). This resulted in a dataset consisting of 12,518 isolated 
and sequenced genomes, representing over 10,500 bacterial species, 
obtained from publicly available datasets (table S1). To reduce sam-
pling bias, we selected a maximum of three isolates per species or 
97% 16S ribosomal RNA (rRNA) similarity cluster (fig. S1, A and B). 
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Because of the computational limitations of applying phylogeny-
based approaches for HGT detection on a genome set of this size 
and the challenges of identifying recent transfer between closely re-
lated organisms at scale, we used a previously vetted heuristic (1) to 
identify organisms that have engaged in HGT. HGT-positive edges 
were defined as those between distantly related organisms (with 
less than 97% sequence similarity in their 16S rRNA) that harbor 
near-identical (99% or greater sequence similarity) regions of 
DNA of at least 500 base pairs (bp) (1). Our final HGT network 
was sparse, consisting of 147,889 observed HGT events among 
6566 genomes or 0.189% of roughly 78.3 million pairwise compari-
sons (Fig. 1A).

We first tested the extent to which phylogeny alone could be 
used to predict HGT within the network. Overall, we observed a 
decay of the HGT rate with 16S rRNA distance, as previously shown 
(1) (fig. S1, C and D). To evaluate whether we could predict HGT 
using phylogeny, iteratively, we chose 500 genomes at random for 
each of five test datasets and chose a balanced set of edges with and 
without observed HGT (HGT-positive and HGT-negative edges, 
respectively) for the test set. To avoid overlap between the training 
and test data, we isolated them from each other by removing from 
the training set any genome in the same species-level taxon and any 
genome with greater than 97% 16S rRNA similarity to any genome 
in the test set. Using LR, we achieved decent HGT predictions using 
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Fig. 1. The functional content of genomes accurately predicts HGT rates. (A) A network diagram showing organisms (nodes) connected by at least one observed HGT 
event (edges). Organisms are colored according to taxonomy. (B) Receiver operating characteristic (ROC) curves for an LR using only 16S rRNA sequence similarity (yellow), 
a Lasso model using functions (KOs) (red), and an RF model using KOs (green). Area under the curve (AUC) values are shown. Details are in the Supplemental Informa-
tion. (C) ROC curves for LR using full-length 16S rRNA similarity and ecological correlations based on sequences with near-identical similarity with 16S V4 rRNA sequences 
from the Earth Microbiome Project (EMP) and for an RF model using the KOs of organisms identified in the EMP. Details are in the Supplementary Materials. (D) ROC 
curves for graphical convolutional neural net (GCN) models, using functions (KOs) for each genome, as well as an uncensored portion of the test set’s adjacency matrix for 
predictions. AUC values are shown. Details are in the Supplementary Materials. (E) A Venn diagram of the number of KOs deemed important by the RF model and the 
number of KOs with positive GraphLime coefficients, as stated in the diagram. (F) KOs are listed according to whether they were found important by the RF model 
[mean(Gini) > 0.004] (top) or consistently had positive GraphLime coefficients in at least 30 of 500 edges in all five experiments (bottom). The mean(Gini) from the RF is 
shown, in addition to the percentage of HGT-positive and HGT-negative edges for which a feature is shared, present in one or absent from both.
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just 16S rRNA distance [mean area under the receiver operating 
characteristic curve (AUROC) = 0.848] (Fig. 1B and fig. S2).

Functional similarity imperfectly correlates with 16S rRNA dis-
tance (Spearman’s rho = 0.679) (fig. S3), owing to both ancient and 
recent HGT. We hypothesized that functional gene content, which 
captures traits relevant to survival in a specific niche, may serve as a 
better predictor of HGT than phylogeny. To test this, we first assigned 
gene functions to each genome’s open reading frames (ORFs) using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and, for 
each pair of genomes, recorded the function as shared, in one genome 
only, or absent in both. As expected, our ability to functionally 
annotate genomes was limited, with 45.91 ± 9.33% of genes per ge-
nome receiving KEGG ortholog (KO) functional assignments (fig. S4). 
Despite this limitation, the Lasso-regularized model using KO 
annotations alone (mean AUROC = 0.917) outperformed the model 
using 16S rRNA distances (Fig. 1B and fig. S2). This was further 
improved by using an RF-based classifier (mean AUROC = 0.983) 
with identical input data (Fig. 1B). It is anticipated that RF will out-
perform Lasso since it effectively uncovers nonlinear signals and 
predicts high-dimension tasks with a higher degree of efficiency 
and interpretability.

Shared ecology is often cited as a strong correlate with HGT 
(1, 14). Documentation of the source for isolates was often nonuni-
form and incomplete. Instead, to obtain comparable quantitative 
information about the distribution of each of the organisms in our 
dataset, we leveraged the Earth Microbiome Project (EMP) dataset 
(fig. S5, A to C), a single effort to comprehensively sample a range 
of biomes using standardized procedures. We cross-referenced the 
19,724 EMP samples’ 16S rRNA amplicons with our dataset of iso-
late genomes, obtaining environmental distributions, using SparCC 
(15), for 9439 genomes (75.4% of our dataset). Our ability to assign 
functions to genomes according to their distribution was unbiased 
(fig. S5D). As has been reported, we find elevated HGT rates among 
organisms with similar ecological distributions (fig. S6A). Since 
neither phylogeny nor functional capacity correlates strongly with 
ecological cooccurrence (fig. S6, B and C), we tested them individually 
for their utility in predicting HGT. Neither ecological cooccurrence 
nor the combination of ecological cooccurrence with phylogeny 
predicts HGT as accurately as functional capacity alone (Fig. 1C 
and fig. S7).

We next hypothesized that there may be signatures of transfer 
embedded within the HGT network not encoded by gene functions 
or 16S rRNA similarities. To assess this, we applied a GCN model, a 
geometric deep learning approach, to the HGT network, to take ad-
vantage of GCNs’ ability to deal with hierarchical, as well as local-
ized, patterns in the underlying data (fig. S8). This model considers 
the traits of each specific genome in the context of its neighbors in 
the network and, iteratively, the neighbors of their neighbors. We 
implemented the same conservative evaluation methods and train-
ing and test set isolation, as described above, for all models, to avoid 
label leakage from the test set to the training set and other sources 
of overestimated performance. With these evaluation measures in 
place, we titrated the amount of topographical information avail-
able to the GCN (16). We determined that the baseline GCN model 
trained on functional KO-based profiles achieved performance akin 
to the RF model (mean AUROC = 0.958) and that this was further 
enhanced as we included increasing amounts of network topo-
graphical information as input (Fig. 1D and fig. S9). The increase in 
the performance strongly suggests that the relationships in the HGT 

network itself provide added context to new HGT events that ex-
tend beyond what can be captured solely by functional annotation.

Niche-specific, metabolic, and mobile traits are important 
for predicting HGT
Given the performance of the RF and GCN models, we sought to 
examine which functional traits were exploited to generate predic-
tions of HGT. Whereas feature importance can be readily extracted 
from RF models, the features used in the GCN’s two hidden layers 
are less immediately interpretable. We adapted the GraphLIME 
method (17), which measures the importance of features to partic-
ular nodes in the network by examining the features of their local 
subnetwork, to evaluate edge predictions instead. A subset of fea-
tures was consistently observed across experiments (Fig. 1E and 
table S2). Despite large differences in structure and feature selection 
methods of the RF and GCN models, we found overlap, albeit lim-
ited, between the models’ respective important and consistent KOs 
used to predict HGT (Fig. 1E). Important features in the GCN likely 
implicate functions that promote/inhibit HGT within closely con-
nected local components, while RF selects features that are broadly 
important across phylogeny.

Among the top important features used to predict HGT by the 
RF model (those with Gini impurities >0.001) (Fig. 1F and table S3) 
were metabolic traits, likely evident of shared environmental niches 
or cellular physiology, ARGs, and genes involved in the process of 
HGT. Among the niche-specific traits important for HGT were an-
aerobic enzymes nrdD and nrdG, which enable organisms to live in 
strict anaerobic conditions such as the human gut (18). The heme 
biosynthesis pathway, including ctaA, ctaB, ctaD, and hemH, and 
iron-containing molecules, such as hemoglobin, both require iron, 
likely reflecting niche-specific iron availability. Cobalamin (vitamin 
B12) biosynthesis genes cobD and cobL likely reflect a similar pat-
tern for cobalt (19). ARGs from various classes were identified as 
important features, although predominantly by the GCN models. 
In addition, the presence or absence of several transposases, likely 
involved in HGT, and the CRISPR-associated gene csh2 reveal com-
patibility factors important for predicting HGT. Emphasized across 
the results of both models is the complexity of factors affecting the 
HGT network. Despite this, we find that just 26 KOs were sufficient 
to accurately predict the HGT network (fig. S10).

HGT network topology improves interphylum  
HGT predictions
Interphylum HGT events are of particular importance as they likely 
contribute to the recent emergence of antibiotic resistance in patho-
genic organisms after HGT with commensal organisms (20) and 
prehistorically underlie substantial shifts in speciation (14,  21). 
“Long-distance” HGT events, between distantly related organisms, 
are thought to be rare, except between species in certain extreme 
environments, such as between halophiles, thermophiles, saccharo-
lytic, or fermentative organisms in termite or ruminant guts rich in 
organic matter (14, 22, 23). Yet, experiments support the feasibility 
of transfer of ARGs between Actinobacteria and Proteobacteria (24). 
Recent long-distance HGT events in our dataset represent only 
11.87% (17,561 of 147,889) HGT-positive edges and are problematic 
to predict using 16S rRNA distance alone (mean AUROC = 0.499) 
(fig. S11A). We were particularly intrigued at how the inclusion of 
topographical information improved our GCN predictions of inter-
phylum HGT (Fig. 2A). This is further illustrated in the transfer of 
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tetO, a tetracycline resistance gene, between the Proteobacteria 
Campylobacter coli and the Actinobacteria Mobiluncus curtisii, and 
members of the Firmicutes, and in the transfer of a peptidoglycan 
lyase (GH23 family) involved in cell wall recycling between the 
Proteobacteria Thalassococcus sp. WRAS1 and both Bacteroides and 
Fibrobacteres genomes (Fig. 2B).

The inclusion of additional network edges in the model resulted 
in tangible improvements in network predictions. We therefore hy-
pothesized that sufficient information for HGT prediction was em-
bedded in the network structure itself, even in the absence of gene 
functions or phylogenetic similarities. Inputting a randomized 
matrix of KO functions and starting with a fully censored network 
(16, 25), we see increasing accuracy as more observed edges are pro-
vided as input, ultimately achieving high performance using network 
topology alone (mean AUROC = 0.873 with 60% of observed edges) 
(Fig. 2C and fig. S11B). HGT predictions for observed HGT events 

were positively associated with a greater number of shared common 
HGT partners (Spearman’s rho = 0.82), which was not the case for 
HGT-negative edges (Spearman’s rho  =  0.12), and with a higher 
minimum number of HGT partners between the pair than HGT-
negative edges (fig. S12). These network embeddings may compensate 
for the limited functional annotations available, encounter rates, or 
other aspects that our model is unable to directly account for.

Transfer involving antibiotic resistance determinants is 
predictable by orthogonal functions
Given the clinical importance of emerging antibiotic resistance, we 
next evaluated our ability to predict transfers specifically involving 
one or more ARGs, which comprised 43.63% of observed HGT 
events and 47.44% of all interphylum transfers. We voided the input 
KO matrices of 645 KOs that shared even vague similarity to known 
ARGs. Despite fewer edges, our HGT predictions improved to 
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near-perfect accuracy (RF: mean AUROC = 0.990; GCN with 60% 
uncensored edges, mean AUROC = 0.993) and the important fea-
tures remain largely consistent as the model trained on all transfers 
(Fig. 3A; fig. S13, A and B; and table S4). Given this performance, 
we chose to examine the rare edges (46 of 23,545 edges, or 0.2%) 
within our test data that achieved high-prediction probabilities 
(over 0.9) of ARG-HGT but for which no transfers were detected 
(Fig. 3B). These edges were nearly exclusive for human-associated 
gut and oral microbiome members of the Firmicutes, Bacteroides, 
and Actinobacteria phyla (Fig. 3C and table S5); involved several 
pathobionts; and were distinct from a randomly permuted sample 
of HGT-negative edges (fig. S13C). These results highlight not only 
the promiscuous nature of the human microbiome but also the yet 
unseen potential for the further spread of ARGs to additional taxa.

As antibiotic classes have different spectra, mechanisms of action, 
distributions in nature, and societal uses, we asked, within those trans-
fers involving ARGs, whether it was possible to predict the specific 
ARG class that was being transferred. Despite the concern over 
multidrug-resistant plasmids, only 8729 edges in the network involved 
more than one ARG class (fig. S14A). Overall, we found reliable 
predictions for all eight well-represented classes of ARGs (mean 
AUROCs between 0.849 and 0.961), with better performances 
obtained for classes involving fewer genes, genomes, and transfers 
(Fig. 3D and fig. S14B).

Models for each antibiotic class resulted in distinct subsets of 
important gene functions (Fig. 3E and table S6). These include im-
portant KOs that reflect each antibiotic’s mechanism of action. For 
instance, among the important features predicting the transfer of 
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beta-lactamase resistance genes are glmM (26), a cell wall precursor 
enzyme, and ampG, a membrane permease required for cell wall 
recycling (27). Whereas the presence of ampG is associated with 
HGT-positive edges, glmM is absent between beta-lactam resistance 
HGT partners, aligning with reports showing that mutations in 
glmM result in increased sensitivity to beta-lactams (28). The muro-
peptides transported by ampG also act as signals to induce expression 
of the beta-lactamase, ampC (29). In accordance with the spectrum 
of glycopeptides and polypeptide antibiotics, we found numerous 
sporulation genes, largely restricted to Gram-positive Clostridia and 
Bacilli, as important features in the prediction of the transfer of 
these ARG classes.

Most of the genes observed across all classes are genes central to 
cellular metabolism, including amino acid, nucleotide, lipid, and 
carbohydrate metabolism (Fig. 3E and table S6). These features 
likely reflect protective metabolic adaptations to antibiotics (12, 30), 
such as through changes in oxidative phosphorylation (31), and to 
the acquisition of exogenous DNA (32), including genes that may 
alter transfer RNA pools (33), or purine and pyrimidine synthesis 
(12). Similar coping strategies involve altering transcriptional con-
trol of core or mobile genes, potentially explaining the large number 
of transcriptional two-component response systems identified as 
important features in our models. We also identify members of the 
Raetz pathway, lpxB, lpxC, lpxD, lpxH, and lpxL, all involved in the 
biosynthesis of the lipopolysaccharide component lipid A, as 
important features in predicting beta-lactam and polypeptide ARG 
transfer, whose members have also been identified as potential an-
tibiotic targets (34). As for aminoglycosides, genes for all members 
of the sodium-translocating NADH (reduced form of nicotinamide 
adenine dinucleotide):quinone oxidoreductase complex were found 
to be important, supporting recent evidence for their role in pro-
moting aminoglycoside resistance through modulating alanine me-
tabolism (35). Metabolic functions are increasingly recognized for 
their role in promoting antibiotic resistance through experiments 
performed on Escherichia coli (36). Our approach confirms the im-
portance of many of these functions in selection on mobile elements 
containing ARGs yet at a much broader taxonomic scale. It also ex-
emplifies how this approach could be used to identify novel anti-
biotic targets.

Across many ARG classes, we identified prokaryotic defense genes 
as important features in our predictions, including toxin-antitoxin 
systems and related components (e.g., parC and mazF), enzymes 
involved in type I and type II restriction-modification systems (e.g., 
dam, hsdR, mcrA, and yhdJ, among others), and CRISPR-Cas pro-
teins (e.g., cas1 and cas2). In addition, genes involved in the machinery 
and process of HGT were also identified: plasmid-segregation systems 
(e.g., parM), components of type IV coupling systems demarcating 
plasmid lineages (virD4), phage proteins (xtmB and rstA1), and 
proteins involved in recombination (xerC, rmuC, ruvC, and recU). 
We suspect that these barriers to HGT delimit subnetworks where 
genes are closely associated with specific transposable elements, 
phage, or plasmid lineages (37–39), as is the case of more recently 
mobilized colistin-resistance genes (40).

Predictions of ARG transfer involving pathogenic strains
The promise of this work is its ability to predict the potential spread 
to and from pathogens. As a proof of concept, we retrospectively 
analyzed the HGT networks of collections of pathogenic isolates 
with our original dataset. First, we analyzed a collection of 433 diverse 

avian pathogenic E. coli strains collected over a period of nearly four 
decades (41) (table S7). Isolates within the same phylogenetic clade 
varied with respect to their observed HGT networks (Fig. 4A). We 
achieved reliable predictions in all ARG classes (mean AUROCs 
ranging from 0.756 to 0.967) (Fig. 4B). The predicted networks of 
two strains are illustrated (Fig.  4C), along with the presence and 
absence in important features distinguishing these two promiscu-
ous genomes (Fig. 4, C to E), revealing the effects of relatively few 
differences in functional content on their respective networks. This 
mirrors observations that single mutations of metabolic genes lead 
to large changes in the transcriptome and antibiotic sensitivities (36).

We next examined a testing panel of 96 clinically relevant, diverse 
strains of Acinetobacter baumannii, a World Health Organization 
Priority 1 pathogen, chosen to represent a large breadth of virulence 
traits, antibiotic resistance determinants and phylogenetic diversity 
(42) (table S7). Despite high genetic diversity in this dataset, subsets 
of strains shared similar HGT networks (Fig.  4F). Class-specific 
ARG-HGT was generally predictable with mean AUROCs over 0.8 
for aminoglycosides, glycopeptides, sulfonamides, MLS (macrolide, 
lincosamide and streptogramin), and multidrug resistance genes 
(Fig. 4G and fig. S15B). Features including HGT machinery genes 
and genes involved in barriers to gene flow captured differences in 
interphylum transfers between the networks of two A. baumannii 
clinical isolates (Fig. 4, H and J). Last, we tested our methods on ran-
domly chosen genomes from a database of 4852 Neisseria gonorrhoeae 
isolates, collected across 15 studies and spanning 65 countries and 
38 years (43) (table S7). Although these isolates carry numerous ARGs, 
mutation and recombination have obscured our ability to detect recent 
ARG-HGT events with members of the original network using our 
conservative heuristic. We only observed recent HGT of tetracycline- 
and beta-lactam–resistant genes, for which we obtain near-perfect 
classification (mean AUROCs = 1.000 and 0.994, respectively) (fig. S16).

Predictions of HGT are robust across datasets
Given that selection may act at differing spatial scales (1), including 
at the level of individual hosts (9), we sought to determine whether 
our approach would be robust for HGT prediction within relatively 
small datasets, sourced from a single environment, or produced by 
a single laboratory or consortium, where dispersal of mobile genetic 
elements, rather than selection, may dominate the signal (44). We 
identified four orthogonal isolate datasets from various environ-
ments [ocean (45), soil (46), plant root (47), and human gut (48)] 
(table S8) and applied our original model built on >12,000 isolates 
to predict HGT. The ocean dataset comprised 847 species, whereas 
the human gut dataset contained 3288 high-quality genomes, albeit 
representing only 93 species (Fig. 5A). The rate of HGT varied sig-
nificantly between datasets: The highest was within the human gut 
(17.92%), as has been observed previously (9, 20, 49), the marine 
and soil datasets were over 60-fold lower (at 0.279 and 0.237%, re-
spectively), and only 26 HGT events were observed in the plant root 
dataset. Since only a subset of the KOs in the original dataset were 
represented, as little as 54.4% in the human gut datasets (Fig. 5B), 
we questioned whether our models would be sufficient at capturing 
HGT networks within these datasets.

Across all datasets, HGT was predictable with high accuracy 
(Fig. 5C and fig. S17). Within the ocean and soil datasets, HGT rates 
correlated strongly with phylogeny (fig. S13), reflected in the per-
formance of the LR using 16S rRNA distance. Apart from the ocean 
dataset, gene functions improved overall predictions of HGT, most 
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notably in the plant root dataset (Fig. 5C). Next, we were curious 
whether our model would still retain predictive ability for HGT 
occurring within an individual’s microbiome, where selective pressures 
may be highly personal (9, 50). Testing on a dataset of 11 individuals, 
with over 130 high-quality genomes per individual, we observed 

that the rates of intrapersonal HGT were higher than interpersonal 
HGT (21.879% versus 17.053%, respectively), but the HGT networks 
within individuals were predictable (fig. S18), suggesting that our 
model is capturing generalizable patterns governing HGT, within 
and across ecosystems.
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plotted adjacent to the heatmap. (B) Area under the ROC curves are plotted for the ARG classes for the APEC isolates for five RF models using the same dataset as Fig. 1, 
excluding E. coli and/or any organisms with 97% similarity to the 16S rRNA of any genome in the test set. Mean AUCs are provided above the boxplots. Boxplots represent 
median and quartile values. The number of edges containing at least one class-specific ARG is noted below the ARG class names. (C) The ARG-specific HGT network of two 
APEC isolates. The phylogenetic tree of all isolates includes 12,518 genomes from the original network, and 445 APEC isolates is shown with edges corresponding to 
predicted HGT events involving ARGs. The color of each edge corresponds to the ARG class, whereas the thickness of each edge is relative to the probability of ARG-HGT. 
(D) The distribution of ARG-HGT probabilities from the ARG-HGT RF model for ARG-HGT–positive (top) and ARG-HGT–negative (bottom) edges is shown. The AUROC is 
provided. (E) Important KOs that distinguish the two APEC strains in (C) are shown. (F to J) Same as (A) to (E) but for 96 clinically relevant Acinetobacter baumannii isolates.

D
ow

nloaded from
 https://w

w
w

.science.org at M
oderna T

herapeutics on July 25, 2024



Zhou et al., Sci. Adv. 2021; 7 : eabj5056     22 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 12

DISCUSSION
Patterns of HGT can be extracted from large-scale HGT networks. 
Using machine learning, we identify specific prokaryotic functions 
that define recent HGT events, gaining insight into the relative con-
tributions of various drivers of HGT, including niche-specific attri-
butes, mechanistic barriers to HGT, and features relevant to subsets 
of transferred genes. Our analysis reveals a set of likely compensatory 
and adaptive functions that may enable organisms to accommodate 
the cellular stresses associated with gene acquisition (32, 33), may 
be genetically linked at hotspots for mobile genetic element integra-
tion (51), or relate to the function of ARGs per antibiotic classes or 
other functions encoded on mobile elements (52). Machine learn-
ing algorithms are sensitive to biases in the training data. Despite 
our best efforts to select a representative dataset, our approach is 
sensitive to the quality of input data (i.e., metagenomic-assembled 
genomes were excessively noisy and were therefore excluded), and 
there are bound to be blind spots. Further improvements in en-
hanced culturomics and continued improvements in metagenomic 
and single-cell assembly would enable microbiome-wide HGT net-
work prediction. Similarly, phylogenetic reconstruction applicable 
to recent time scales (53) or among closely related strains that can 
be applied at scale may provide greater resolution and directionality 
of HGT events.

To our surprise, the predictability of recent HGT events not only 
was evident at the broadest scale, across phylum and biomes, but 
also extended to specific environments, such as an individuals’ gut 

or plant’s rhizome, and even within single clades of pathogenic spe-
cies, suggesting that signatures of selection dominate over stochastic 
sampling. The predictability of recent HGT events provides us with 
a better understanding of bacterial adaptation to rapidly shifting 
conditions, such as those brought about by the anthropogenic dis-
semination of antibiotics. This opens the possibility of quantifying 
the risk of HGT between pathogens and microbiome constituents 
that lead to the emergence of novel antibiotic resistance strains and 
the expansion of ARG reservoirs within a localized context. This 
framework may be leveraged to improve the design of mobile genetic 
elements intended for engineering the microbiome (44) or inform 
strategies to reduce ARG burden by curing or eliminating plasmids 
or inhibiting conjugation.

METHODS
Genome collection
The sequences of 47,373 bacterial and archaeal genomes were 
downloaded from the National Center for Biotechnology Information 
(NCBI) and Pathosystems Resource Integration Center (PATRIC) 
in October 2020, including 1520 recently published nonredundant 
genomes from cultivated human gut bacteria (54) and 31,911 spe-
cies-level representatives from the Genome Taxonomy Database 
(GTDB) (55) release 95 (from NCBI Assembly/Refseq). We excluded 
metagenomic assembled genomes (MAGs); genomes labeled as coming 
from an “environmental source,” as it was difficult to consistently 
determine which of these were MAGs; or single-cell genomes based on 
NCBI assembly metadata (downloaded on 6 November 2020). To 
avoid contaminating sequences from appearing as regions of HGT, 
we carefully screened genomes for host DNA and vector sequence 
contamination. We used conterminator (56), with default settings, 
to screen host DNA from their database of hosts, which includes 
Saccharomyces cerevisiae, Danio rerio, Mus musculus, Drosophila 
melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, and 
Homo sapiens. We additionally mapped selected human repeats not 
present in the current human reference genome (57), GRCh38 (LINE 
family: L1HS_3end, L1HS_5end, L1MC4_3end, L1P1_orf2, and 
L1PBa_5end, L2; Alu family: AluJo, AluSg, AluSx, AluSz, AluY, BC200, 
and FRAM; satellites: ACRO1, ALR, BSR, and HSATII; LTR EVRs: 
ERVL, MER5A, MIR, MIRb, MST-int, MSTB, and THE1-int; Tigger1) 
against all prokaryotic genomes, removing genomes that were mapped 
with HMMER software (58) v3.3 at e values below 10−10. Contigs that 
were predicted as cross-kingdom contaminations were removed from 
the genomes. To remove vector contamination, we searched genomes 
against the UniVec database v10.0 using BLASTn (with Vecscreen 
parameter -reward 1 -penalty -5 -gapopen 3 -gapextend 3 -dust yes -soft_
masking true –evalue 700 -searchsp 1750000000000 -outfmt 6). Contigs 
with vector contamination less than 100 kb were removed from the 
genome, or if a genome contained a contaminated contig greater 
than 100 kb, the entire genome was removed from our analysis.

Genome quality statistics were measured using CheckM (13) v1.1.2 
(with parameters lineage_wf --tab_table -x fna), and high-quality 
genomes (more than 90% completeness and less than 5% contami-
nation) were retained for constructing HGT network in the down-
stream analysis. 16S rRNA genes from the high-quality genomes were 
identified with the RNAmmer (59) v1.2. We removed genomes for 
which we could not identify near–full-length 16S sequences (>1000 bp). 
Overrepresented species (with over three representative strains) 
were subsampled down to three genomes, resulting in a total of 
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12,518 high-quality genomes representing more than 10,500 unique 
bacterial species included in our dataset (table S1).

Construction of the HGT network
Near full-length 16S rRNA sequences were aligned using MAFFT 
(60) v7.453 (auto), and a sequence similarity matrix was calculated 
using Clustal Omega (61) v1.2.4 (with parameter: --full --percent-id). 
We defined recent HGT between two distantly related genomes 
(less than 97% 16S rRNA sequence similarity) by the identification 
of at least one shared region of DNA of at least 500 bp with 99% or 
greater similarity by BLASTn, as originally described by Smillie et al. 
(1) and used elsewhere (9). A total of ~78 million pairwise compar-
isons were performed. A total of 6566 genomes showed evidence of 
at least one HGT event, which were used to build the binary HGT 
network using Networkx v2.4.

Functional annotation of high-quality genomes
ORFs were predicted in all high-quality genomes using Prodigal (62) 
v2.6.3. The resulting coding sequences were annotated by aligning 
to the KEGG functional database (KEGG database; Release 79.0) 
using Diamond (63) (blastp --id 50 --max-target-seqs 1). Within a 
single genome, genes assigned to the same KO were aggregated so 
that only the binary status (presence/absence) of KOs was considered. 
We constructed a KO-genome matrix based on KO presence/absence 
to use as a feature map for downstream modeling. The number of 
shared KO Nshared between two genomes X and Y was normalized 
using the following formula

	​  ​N​ shared​​ × ​ ​N​ x​​ ─ ​N​ y​​
 ​ × ​  1 ─ ​N​ x​​ + ​N​ y​​

 ​​	

where the number of annotated KOs in genome Y is larger than in 
X: Ny ≥ Nx.

Functional pathways were annotated using BRITE pathways and 
grouped into larger categories manually. Some KOs were associated 
with multiple pathways.

Identification of transferred ARGs
We extracted all transferred DNA sequences from each genome using 
extractseq from EMBOSS (64) v6.6.0 and predicted ORFs using 
Prodigal (62) v2.6.3. We excluded partial ORFs in our analysis. Using 
Diamond (63) v0.9.34 (with parameter: e value <10–5, >40% identity 
at the protein level, and >80% query sequence coverage), gene sequences 
were searched against the database ARG-miner (65) v1.1.1.A. Anti-
biotic resistance classes, as defined by ARG-miner, that were involved in 
fewer than 1000 edges on the HGT network were regrouped into “other” 
category (including “nitroimidazole,” “aminocoumarin,” “fosfomycin,” 
“phenicol,” “fluoroquinolone,” “sulfonamide,” “pleuromutilin,” 
“nucleoside,” “mupirocin,” “unclassified,” “fosmidomycin,” “rifamycin,” 
“elfamycin,” “oxazolidinone,” “tetracenomycin,” “triclosan,” 
“bicyclomycin,” “qa_compound,” and “acridine dye”).

Species-level cooccurrence estimation
All 16S rRNA genes from high-quality genomes were aligned to all 
V4 operational taxonomic units (OTUs) identified in the EMP (66) 
(~8 million OTU single-end representative sequence reads of 90 to 
151 bp), which include amplicon-sequenced samples from various 
habitats, i.e., human, animal, plant, and saline/nonsaline environments. 
16S rRNA sequences that share over 99% sequence similarity 

(fig. S5) over a span of at least 80 bp with EMP OTUs were assigned 
the same species name. The microbial abundance table used in the 
present study was the open_ref BIOM table from the EMP database 
(66). The OTU count table was based on the sequence data from the 
EMP database, which used open-reference OTU picking in QIIME 
(67). For samples from the same individual’s body site or the same 
animal, we randomly chose one to include in our analysis. EMP 
samples in different environments were categorized into five main 
groups (human, nonhuman animals, saline, nonsaline, and plant), 
which were used to calculate cooccurrence correlation coefficients 
using FastSpar (68) (−-iterations 50), a C++ implementation of the 
SparCC (15) algorithm.

Lasso, LR, and RF models
To predict HGT events using KEGG orthologs, we denote y as the 
response vector of the HGT state between genomes, y = (y1, y2…, 
yN) with binary values: 1 (at least one HGT event) or 0 (no detected 
HGT), and X as the matrix that contains the shared/nonshared sta-
tus of KOs for each genome pair, X = ([X1, X2…, XN]) with categor-
ical values: 2 (shared), 1 (only present in one), or 0 (in neither). 
Taking the advantage of scikit-learn (69) v0.22.2 in Python 3.5.5, we 
implement three other different machine learning models: LR, reg-
ularized LR (Lasso), and RF. To predict HGT using 16S rRNA sim-
ilarity or cooccurrence correlation coefficients, in the case of LR, we 
used “L2” regularization to avoid overfitting. Best hyperparameters 
were determined by grid search method (“GridSearchCV”: cv = 5) 
(69) using a validation set, comprising 500 randomly chosen genomes 
from the training set. Models were evaluated on five randomly se-
lected training and test sets. Special care was taken to avoid overlap 
between the test and training sets. Test datasets consist of 500 ran-
domly selected nodes, unless otherwise stated. The corresponding 
training set for each experiment includes all remaining genomes, 
excluding those that are of the same species as any genome in the 
test set and/or those with ≥97% 16S rRNA sequence similarity. After 
training using the training dataset, the model is then applied to the 
test dataset, and the predicted results are compared with their orig-
inal labels. For predicting HGT using KEGG orthologs, we fit a Lasso 
model (alpha = 0.01, fit_intercept = True, normalize = False, max_
iter = 1000, tol = 0.0001) and an RF model [n_estimators = 5000, 
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_
leaf  =  0.0, max_features  =  ‘auto’ (same as “sqrt”)] to our labeled 
training data. For consistency, direct model comparisons were all 
performed using the same training and test sets.

Prediction of HGT using graph convolutional network
We developed a GCN (70) using the TensorFlow (v1.13.1) and Py-
torch (v1.6.0) framework, by first constructing an adjacency matrix, 
A ϵ RK×K (we assume that diagonal elements are set to 1, i.e., every 
node is connected to itself), encoding HGT events between its K 
genomes, and an ortholog feature matrix, X ϵ RK×C. GCN can be 
represented as a series of neighborhood aggregation layers: ​​H​​ (l+1)​  = 
(​ ~ A ​ ​X​​ (l)​ W)​, where X(l) is a matrix of node embeddings at the lth 
layer, X(0) are input node attributes, W is a trainable parameter matrix, 
 is a nonlinear activation function, and ​ ​ ~ A ​​ is the Laplacian-normalized 
adjacency matrix, defined as ​​ ~ A ​  = ​​    D ​​​ −​1 _ 2​​ A ​​   D ​​​ −​1 _ 2​​; ​​   D ​​ ii​​  = ​ ∑ j​ ​​ ​A​ ij​​​. Our 
model consists of two layers (32 × 16) to learn the HGT network, with 
a rectified linear unit (ReLU) activation function in the first layer

	​ GCN(X, A ) = ​ ~ A ​ ReLU(​ ~ A ​X ​W​ 0​​ ) ​W​ 1​​; ReLU(x ) = max(x, 0)​	
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As the latent embedding vectors cover both functions and net-
work information, the inner product decoder is used to predict po-
tential HGT links. Let H denote the latent vector of the second layer. 
We calculate embeddings H = GCN(X, A)  and the reconstructed 
adjacency matrix ​​   A ​​ as follows: The score of potential HGT edges is 
calculated as ​​   A ​  =  (H ∙ ​H​​ T​)​, where  is a sigmoid function for bi-
nary HGT predictions.

During model training, we minimize the following cost function 
with L1 regularization

	​ l  = ​ l​ 0​​ + ​  ─ 2 ​ ∙ ​  ∑ 
{(​W​ 0​​,​W​ 1​​)}

​​​  ∣∣​	

	​​ l​ 0​​  =  − ​ 1 ─ N ​ × norm × ​∑ 
ij
​ ​​(​A​ ij​​ log ​​   A ​​ ij​​ ​W​ p​​ + (1 − ​A​ ij​​ ) log(1 − ​​   A ​​ ij​​ ) )​	

where N denotes the size of adjacency matrix, Wp denotes the ratio of 
negative and positive edges ​​​​N​ 

node
​​​​ 2​ − ​N​ 

edge
​​ _ ​N​ edge​​

 ​​ , and ​norm  = ​   ​​N​ node​​​​ 2​ ____________  2 × (​​N​ node​​​​ 2​ − ​N​ edge​​) 
​​.

To examine the predictive power of the network topology struc-
ture, censored networks were generated to mask a proportion of 
HGT edges and predict these missing edges (fig. S8), with and with-
out including KO features. In the latter, the KO feature matrix X(0) was 
replaced with binary random matrices generated by “numpy.random.
randint(2)” with the same shape of X for both training and test sets.

For consistency, direct model comparisons were all performed 
using the same training and test sets, as stated above: Five test sets 
consisting of 500 randomly sampled genomes were selected, and 
the corresponding training set was then defined by all remaining 
genomes, excluding any genome with the same species name and/or 
≥97% rRNA similarity with any genome in the test set. All hyperpa-
rameters are determined through a grid search based on the model’s 
performance on the validation set, comprising 500 randomly cho-
sen genomes from the training set. We used the ADAM optimizer 
with learning rate lr = 0.00005 and L1 loss scale ( = 0.001). The 
minimum number of epochs for training is 100. To avoid overfitting, 
the ROC score of the validation set was examined after each epoch.

Model evaluation
The ROC curves were calculated on the relationship between the 
false positive and true positive rates using the sklearn.metrics.roc_
curve function. The precision-recall curves were calculated by the 
sklearn.metrics.precision_recall_curve function [sklearn (69) v0.22.2]. 
The area under the curve, calculated using the sklearn.metrics.auc 
function, was used as a metric to benchmark the accuracy of a pre-
diction model. Test data for evaluations were balanced by decreasing 
the number of samples of majority class.

Extracting KO importance
For RF, we obtained the “Gini importance” for each KO feature 
using the “.feature_importances” parameter from the scikit-learn 
(69) v0.22.2 implementation, which is defined as the total decrease 
in node impurity (weighted by the probability of reaching the node) 
averaged over all trees of the ensemble. For graph neural networks, 
GraphLIME (17) is an algorithm that measures the explanatory value 
of specific nodes or edge features within small subgraphs by indi-
vidually considering the union of N-hop neighboring nodes, and 
then a nonlinear surrogate model, Hilbert-Schmidt Independence 
Criterion (HSIC) Lasso, is used to fit the local dataset. The subset 
of important features that explain the HSIC Lasso predictions are 

considered as the explanations of the original GCN prediction. 
We slightly modified the output of GraphLIME to perform the 
same task, but for edge predictions: Instead of extracting the neigh-
borhood of a node, we extracted the union of the neighborhood of 
two nodes linked by an edge. For each experiment, 500 randomly se-
lected HGT edges were used to learn important features, thereby 
determining a subset of node features that are most influential for 
the pretrained GCN prediction. For the GCNs, we focused on the 
subset of KOs that were consistently important across five separate 
GCN experiments. For each feature, we calculated the percentage of 
10,000 randomly sampled HGT-positive and HGT-negative edges 
where the KO is present in both, one, or neither genome.

Antibiotic resistance transfer (HGT-ARG) prediction
HGT edges with putative ARGs were used to construct an ARG-specific 
HGT network. To avoid overfitting, we removed 645 KOs that shared 
50% of more sequence similarity to any gene in the ARG-miner 
database. We then used the RF, Lasso, and GCN frameworks to 
predict a binary ARG-HGT network using the same hyperparame-
ters as in the binary HGT predictors. The sources of isolates de-
scribed in Fig. 3C and fig. S13, and listed in table S5, were manually 
curated according to their records in NCBI or PATRIC. We trained 
a set of RF (one-versus-rest binary classifiers for multiclass classifi-
cation) to distinguish the transfer of different ARG classes using 
parameters (max_features  =  “auto,” min_samples_leaf  =  3, min_
samples_split = 4, n_estimators = 5000,class_weight = “balanced”) 
after tuning by grid search method (“GridSearchCV”: cv = 5) (69). 
Importance features of each RF predictor were extracted by “.fea-
ture_importances.” For the sole purpose of examining the network 
properties of the ARGs (fig. S14), we clustered putative ARGs using 
CD-HIT v4.6.8 (-c 0.5 -s 0.8). Longest shortest paths of each cluster 
were computed using the output of “.shortest_path_length” func-
tion from NetworkX.

We further apply these RF predictors to predict ARG transfers 
between our collected genomes and three sets of single-species iso-
lates from E. coli (41), N. gonorrhoeae (43), and A. baumannii (42) 
(table S7). HGT links between the original dataset of genomes and 
these genomes were computed using the methods stated above. 
Shared regions of DNA were extracted, and putative ARGs in the 
shared regions were annotated. Each single-species isolate dataset 
was used as the test data. Genomes with the same species name and/
or those with over 97% sequence similarity in 16S rRNA were 
removed from the training set. For each ARG class, a balanced, 
random set of negative ARG-specific HGT edges were chosen for 
evaluation purposes.

Predictions of HGTs in other datasets
Newly isolated genomes from multiple environments [ocean 
(MARMICRODB) (45), soil (46), plant root (47) and human gut 
(48)] were downloaded. Genomes were screened for human genome 
repeats, vector sequence contamination, and contamination from 
S. cerevisiae, D. rerio, M. musculus, D. melanogaster, A. thaliana, 
C. elegans, and H. sapiens using the same methods mentioned 
above. The final list of genomes used in our analysis can be found in 
table S8. HGT links within each dataset and between the dataset and 
our original genome dataset were computed. We used similar data 
splitting strategies as stated above: The training set for each experiment 
includes all preprocessed genomes, excluding those with the same 
taxonomy species name as any genome in the test set and those with 
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≥97% rRNA sequence similarity. LR, RF, and GCN were trained 
using only the genomes in our dataset and tested using the full data-
set from each environment, each time choosing a balanced set of 
HGT-negative edges for evaluation.

Phylogenetic tree
To construct the phylogenetic tree, MAFFT (60) v7.453 (auto) was 
used to align 16S sequences. A neighbor-joining tree with nearest-
neighbor interchange was estimated by FastTree v2.1.10 using de-
fault settings. The phylogenic tree was annotated and plotted using 
the Interactive Tree of Life (https://itol.embl.de/).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj5056
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