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ABSTRACT
Objectives  This study aims to elucidate the microbial 
signatures associated with autoimmune diseases, 
particularly systemic lupus erythematosus (SLE) and 
inflammatory bowel disease (IBD), compared with 
colorectal cancer (CRC), to identify unique biomarkers 
and shared microbial mechanisms that could inform 
specific treatment protocols.
Methods  We analysed metagenomic datasets from 
patient cohorts with six autoimmune conditions—SLE, 
IBD, multiple sclerosis, myasthenia gravis, Graves’ disease 
and ankylosing spondylitis—contrasting these with CRC 
metagenomes to delineate disease-specific microbial 
profiles. The study focused on identifying predictive 
biomarkers from species profiles and functional genes, 
integrating protein-protein interaction analyses to 
explore effector-like proteins and their targets in key 
signalling pathways.
Results  Distinct microbial signatures were identified 
across autoimmune disorders, with notable overlaps 
between SLE and IBD, suggesting shared microbial 
underpinnings. Significant predictive biomarkers 
highlighted the diverse microbial influences across 
these conditions. Protein-protein interaction analyses 
revealed interactions targeting glucocorticoid signalling, 
antigen presentation and interleukin-12 signalling 
pathways, offering insights into possible common 
disease mechanisms. Experimental validation confirmed 
interactions between the host protein glucocorticoid 
receptor (NR3C1) and specific gut bacteria-derived 
proteins, which may have therapeutic implications for 
inflammatory disorders like SLE and IBD.
Conclusions  Our findings underscore the gut 
microbiome’s critical role in autoimmune diseases, 
offering insights into shared and distinct microbial 
signatures. The study highlights the potential importance 
of microbial biomarkers in understanding disease 
mechanisms and guiding treatment strategies, paving the 
way for novel therapeutic approaches based on microbial 
profiles.
Trial registration number  NCT02394964.

INTRODUCTION
Mounting evidence links the gut microbiome 
with a wide range of autoimmune conditions, 
including Crohn’s disease (CD), ulcerative colitis 
(UC), rheumatoid arthritis (RA), type 1 diabetes 
(T1D), multiple sclerosis (MS), systemic lupus 

erythematosus (SLE) and others.1–9 Metagenomic 
data from human gut microbiome samples has been 
used to identify microbial signatures that associate 
with a particular condition or disease with the 
goal of identifying potential causative agents and 
therapeutic targets.10–13 Given the overwhelming 
amount of sequencing data generated, large-scale 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The gut microbiota acts causally in autoimmune 
diseases, with certain microbial species linked 
to specific conditions.

	⇒ There is a significant need for comprehensive 
analyses to identify biomarkers and understand 
the mechanisms through which the microbiome 
influences autoimmune disorders.

WHAT THIS STUDY ADDS
	⇒ Our research uncovered unique microbial 
signatures and functional gene profiles across 
various autoimmune diseases, indicating 
distinct microbial influences and shared 
mechanisms, notably between systemic lupus 
erythematosus and inflammatory bowel 
disease.

	⇒ We introduced novel insights through protein-
protein interaction analyses, uncovering 
microbiome-driven pathways that may be 
crucial for understanding and managing 
autoimmune conditions.

	⇒ Additionally, we experimentally validated 
several key protein-protein interactions, 
particularly those involving the glucocorticoid 
receptor (NR3C1), reinforcing their potential as 
therapeutic targets.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The findings set the stage for future 
investigations into the interactions between 
the gut microbiome and the immune system, 
pointing to potential therapeutic targets.

	⇒ In clinical settings, the identified microbial 
biomarkers might facilitate improved diagnosis 
and personalised treatment strategies for 
autoimmune diseases, impacting healthcare 
policies and guiding research towards 
incorporating metagenomic data for enhanced 
patient care.

 on S
eptem

ber 19, 2024 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/ard-2024-225829 on 18 S

eptem
ber 2024. D

ow
nloaded from

 

http://www.eular.org/
http://ard.bmj.com/
http://orcid.org/0000-0002-2250-3480
https://doi.org/10.1136/ard-2024-225829
https://doi.org/10.1136/ard-2024-225829
http://crossmark.crossref.org/dialog/?doi=10.1136/ard-2024-225829&domain=pdf&date_stamp=2024-09-18
https://clinicaltrials.gov/show/NCT02394964
http://ard.bmj.com/


2 Zhou H, et al. Ann Rheum Dis 2024;0:1–12. doi:10.1136/ard-2024-225829

Autoinflammatory disorders

comparative analyses can now be used to reliably identify asso-
ciations, either at the level of species or functions, between gut 
microbiota and autoimmune diseases and unveil novel biological 
mechanisms underlying these diseases.

The gut microbiome in autoimmune diseases exhibits signif-
icant instability, known as dysbiosis, which manifests distinctly 
across individuals, being notably pronounced during active 
phases of the disease and often mild or absent during periods 
of remission. Such variability suggests that the microbiome’s 
composition is closely linked to the clinical manifestations and 
the waxing and waning course of autoimmune conditions.14 15 
This insight has important implications for the use of micro-
biome profiling as a potential biomarker for disease status and 
activity such as microbial reactivity,9 as well as disease manage-
ment decisions. Furthermore, the dynamic nature of the micro-
biome in response to disease activity highlights the necessity 
for longitudinal studies to capture these fluctuations, thereby 
enriching our understanding of the microbiome’s role in health 
and disease.8 16 17

Certain microbial species have long been associated with 
specific conditions or diseases, including in patients with auto-
immune diseases, such as SLE and RA.6 8 18–21 Mechanistic 
preclinical studies together with associations in human tissues 
have indicated that Enterococcus gallinarum may be involved 
in the pathogenesis of SLE and autoimmune liver diseases by 
translocating into internal organs and promoting self-directed 
responses.6 9 22–25 Similarly, lactobacilli, increased in a subset of 
patients with SLE, were shown in murine studies to translocate 
into extraintestinal organs where they promote type I interferon 
signatures.21 Meanwhile, Ruminococcus gnavus expansion has 
been observed in patients with lupus nephritis. Its significance 
lies in its unique immunoreactive lipoglycan,26 which has immu-
nological implications in lupus.17 By contrast, higher abundances 
of Clostridium leptum, Lactobacillus gasseri and Bifidobacterium 
bifidum are detected in the gut microbiomes of healthy patients, 
suggesting that these related bacteria may protect against autoim-
mune disease.6 17 27 28 Nevertheless, identifying bacterial species 
signatures that are specific to a particular autoimmune disease 
can be challenging due to significant overlap between diseases, 
especially in the early stages of a disease when the microbiome 
is in a state of transition.29 30 Furthermore, species-level asso-
ciations provide little mechanistic insight and do not account 
for the differences in genomic content and functional profiles of 
individual strains.

Recent metagenomic studies have further advanced our under-
standing of the microbiome’s role in autoimmune diseases, by 
detailing species and functional capacities that differ in disease 
states, including involvement in metabolic pathways and drug 
resistance.31 crp (K10914, CRP/FNR family transcriptional regu-
lator) has been identified as an important feature of microbiomes 
in patients with inflammatory bowel disease (IBD) and is associ-
ated with higher calprotectin, a measure of gut inflammation.32 
Other IBD studies point to enzymes involved in oxidative stress, 
lipid metabolism and protein degradation.13 33 Fewer metag-
enomic studies have been performed on other autoimmune 
diseases compared with IBD. However, studies of the gut metag-
enomes in patients with SLE have found enrichment of pathways 
related to flagellar assembly, sulfur metabolism and lipopoly-
saccharide biosynthesis.6 34 Metagenomics has the potential 
for elucidating the microbiome’s multifaceted impact on auto-
immune pathogenesis,6 35 yet more work is needed to establish 
causality, as well as to establish specificity to each disease.

Host-microbiome protein-protein interactions (PPIs) poten-
tially play critical roles in generating disease-specific signatures 

and shaping the unique microbiome profiles observed across 
different patients in a given disease group.3 8 Physical host-
microbiota interaction are facilitated by the direct localisation of 
bacteria in mesenteric lymph nodes, Peyer’s patches and epithe-
lial barriers that promote mutualism through both innate and 
adaptive immune responses.36 37 This physical proximity facil-
itates both mutualistic relationships, and intricate molecular 
interactions that can impact disease progression. Commensal 
proteins that include mucin degradation enzymes and protease 
inhibitors produced by microbiota may have immunomodula-
tory effects in the intestine that influence immune activation or 
suppress expression of inflammatory cytokines.38 39 To predict 
microbial functions associated with the development of each 
autoimmune disease, we used previously constructed host-
microbiome PPI network models.40 Beyond the observation of 
a general dysbiosis, we aim to obtain functional insights into 
species-level differences, involving analyses of differentially 
abundant PPIs relevant to IBD and/or SLE.

METHODS
Sample collection and processing
78 faecal samples were obtained, with 32 samples from 14 
SLE pretreatment outpatients and 46 samples from 22 healthy 
controls collected at Yale University Medical. The study encom-
passed patients with lupus and age-matched (±5 years), as well 
as sex-matched healthy controls, all of whom were enrolled over 
a span of 2 years.8 The SLE Disease Activity Index (SLEDAI) 
score was determined using the SLEDAI-2K calculator.41 Each 
participant attended up to three study visits, during which 
comprehensive health and diet histories, whole blood and oral, 
skin and faecal microbiota samples were collected, in line with 
a published microbiome study protocol at Yale (​ClinicalTrials.​
gov ID NCT02394964). Faecal samples were then preserved at 
−80°C pending DNA extraction. As previously mentioned in an 
earlier study, a dataset including samples from individuals with 
MS (25 cases and 26 controls, one sample per individual) was 
collected and incorporated into the analysis.42 In the study by 
Chen et al (SLE2), samples from treated patients were excluded 
from the analysis.18

Metagenomic sequencing
Genomic DNA was extracted from thawed stool samples using 
the QIAGEN DNeasy 96 PowerSoil Pro Kit. The DNA samples 
were then diluted to 0.2 ng/μL in nuclease-free water and the 
libraries were prepared using Nextera XT DNA Library Prep 
Kit (Illumina). Libraries were purified with Ampure XP beads 
(Beckman Coulter). High-throughput sequencing was carried 
out by The Yale Center for Genome Analysis using an Illumina 
NovaSeq6000 system.

Processing of metagenomic data
Sequencing reads were dereplicated using the ​prinseq-​lite.​
pl V.0.20.26, with the following settings: -derep 12 345 -no_
qual_header.43 Dereplicated reads were then passed through 
the KneadData V.0.3 quality control pipeline (http://hutten-
hower.sph.harvard.edu/kneaddata), which incorporates the 
Trimmomatic and BMTagger44 and decontamination algorithms 
to remove low-quality reads (thresholding Phred quality score 
at <20; minimum length <150) and reads of human genome 
origin.45 Taxonomic profiling was performed using MetaPhlAn3. 
Functional profiling was performed using HUMANN3.46 
Samples with fewer than 107 reads were removed from analyses. 
Short-chain fatty acids (SCFAs) were identified and concatenated 
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according to Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthologs, as catalogued in a prior study.47

CRC and IBD datasets used in this study were curated as 
part of ExperimentHub.48 We downloaded all protein abun-
dance matrices, annotated at the level of UniRef90 clusters 
via HUMAnN3, and associated metadata. For each study, we 
mapped UniRef90 bacterial clusters to UniRef50 clusters using 
DIAMOND blastp,49 requiring >90% sequence identity and 
>90% coverage.

Statistical analysis and disease state prediction
Differentially abundant microbial features between patients 
and healthy controls were detected through generalised linear 
regression analysis using Maaslin2.50 The linear model was 
formulated based on the log10-transformed abundances of each 
feature, with adjustments made for age and sex. The Benjamini-
Hochberg method was employed to adjust for multiple testing. 
A Random Forest Classifier, predicting disease state from micro-
biome taxonomic and functional profiles, underwent a five-
times repeated 10-fold cross-validation using scikit-learn.51 The 
classifier’s hyperparameters were optimised via Randomized-
SearchCV, using area under the receiver operating characteristic 
curve (AUROC) and area under the precision recall curve as 
the scoring metric, and tested across different studies. Prior to 
training, feature abundances underwent log10 transformation 
with small constant offsets (1e−9) and were subsequently stan-
dardised using z-score normalisation. For individuals providing 
multiple samples from different visits, the sample from the first 
visit was selected for use in both intra-cross-validation and cross-
studies validation.

Identification and analysis of human-microbiome PPIs
A previously established approach40 was employed to map 
metagenomic datasets for predicting disease-relevant human-
microbiome PPIs. For each individual in the study, bacterial 
proteins were identified and their abundances were aggregated 
based on their corresponding human protein interactors. 
Human proteins that were present in <5% of the study cohort 
were excluded. The identification of differentially abundant 
PPIs between patients and healthy controls was performed using 
generalised linear regression analysis using Maaslin2.50

Human pathway annotation and enrichment analysis
Disease annotations were obtained from DisGeNET based on 
their gene-disease associations (GDAs), specifically those with 
GDA scores >0.152 (June 2022). We performed pathway enrich-
ment analysis using QIAGEN’s Ingenuity Pathway Analysis 
software (IPA, QIAGEN Redwood City, California, USA, www.​
qiagen.com/ingenuity). Pathways were considered enriched if 
they had Benjamini-Hochberg-corrected p values <0.05.

Cell culture
HEK293T cells were obtained from American Type Culture 
Collection (CRL-3216) and maintained using Dulbecco’s Modi-
fied Eagle Medium (Corning) supplemented with 10% fetal 
bovine serum (Cytiva). 18 hours before transfection, cells were 
seeded in a 24-well plate.

Plasmids
The FLAG-tagged expression vector pDEST-CMV-FLAG was 
generated by purchasing a vector from Addgene (#122845) and 
cloning out EGFP. The c-Myc-tagged expression vector pMH-
MYC was purchased from Addgene (#101765). Human NR3C1 

was Gateway cloned from pDONR-NR3C1 (CCSB Human 
Orfeome Collection) into pDEST-CMV-FLAG, human Hsp90α 
was Gateway cloned from pDONR-Hsp90a (CCSB Human 
Orfeome Collection) into pMH-MYC, and all bacterial genes 
and mCherry were synthesised directly as Gene Fragments from 
Twist Bioscience and cloned into pDONR223, then Gateway 
cloned into pMH-MYC. All Gateway cloning was performed 
using Gateway LR Clonase II Enzyme mix (Invitrogen) according 
to the manufacturer’s instructions. All plasmids were extracted 
using E.Z.N.A. Endo-free Plasmid DNA Mini Kit II (Omega 
Bio-Tek).

Co-immunoprecipitation assay
HEK293T cells in 24-well plate were transfected using JetPEI 
(Sartorius) according to the manufacturer’s instructions. When 
co-transfecting pDEST-CMV-FLAG and pMH-MYC, only half 
the amount of recommended DNA was used for each vector. 
Media was replaced 12 hours after transfection. 48 hours 
post-transfection, cells were processed using Pierce c-Myc-Tag 
Magnetic IP/co-immunoprecipitation (Co-IP) Kit (Thermo 
Scientific) according to the manufacturer’s instructions. Aliquots 
of the whole cell lysates and Co-IP elutions were flash frozen and 
stored at −80°C until further analysis.

Western blot analysis
Lysates and Co-IP elutions were subjected to sodium dodecyl 
sulfate polyacrylamide gel electrophoresis and transferred to 
nitrocellulose membranes using iBlot 2 Dry Blotting System (Invi-
trogen) for 7 min. Membranes were blocked using phosphate-
buffered saline (PBS) with 5% non-fat milk and 0.1% Tween-20 
for 1 hour then probed with an horseradish peroxidase (HRP)-
conjugated anti-FLAG antibody (HRP-66008, ProteinTech) 
diluted 1:10 000 for 1.5 hours at room temperature. Membranes 
were washed three times with PBS+0.1% Tween-20. Proteins 
were visualised using Pierce ECL Western Blotting Substrate 
(Thermo Scientific). WesternSure Pre-stained Chemilumines-
cent Protein Ladder (LI-COR) was used as the molecular weight 
marker. Western blots were quantified using ImageJ.

Patient and public involvement
Patients and/or the public were not involved in the design, or 
conduct, or reporting, or dissemination plans of this research.

RESULTS
Identification of taxonomic signatures associated with 
autoimmune disorders
To investigate whether an individual’s gut microbiome composi-
tion is indicative of having an autoimmune disease, we analysed 
metagenomic datasets from seven studies focused on various 
autoimmune disorders (IBD),13 53 Graves’ disease (GD),54 SLE,34 
ankylosing spondylitis (AS)55 and myasthenia gravis (MG),56 in 
addition to one new SLE metagenomic cohort and one new MS 
metagenomic cohort42 (figure 1A; online supplemental table 1). 
The SLE cohort was the previous subject of longitudinal species-
level analyses (with a focus on bacterial orthologs of the auto-
antigen Ro608). We included four published colorectal cancer 
(CRC) datasets for comparison, as microbiomes from individuals 
with CRC are typically dysbiotic.57 58 Additionally, since patients 
with IBD are at increased risk of developing CRC,59 this predis-
position may be reflected in their microbiomes. Combining data-
sets is often confounded by variables that are difficult to extract 
(sequencing depth, populational differences in diet, age, etc). 
Among the datasets we analysed, we noticed a strong bias in 
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the phylum-level dominance of either Bacteroidota (formerly 
known as Bacteroidetes) or Bacillota (formerly known as Firmic-
utes) (online supplemental figure 1).

A useful method for identifying consistent features across 
datasets involves the utilisation of machine learning models in 
two distinct ways. First, by training models on one dataset and 
testing their predictive ability on another to test if the model 
generalises well beyond its training data. Second, we employ 
n-fold cross-validation to test the predictive power of the models 
within individual studies.60 61 We initially focused on the effi-
cacy of random forest models trained on species compositions. 
In cross-cohort test-train scenarios, models trained with micro-
bial compositions from patients with IBD could predict SLE 

in other cohorts with a diagnostic ability ranging from modest 
to confident, as indicated by average AUROC values between 
0.60 and 0.74. Conversely, using microbiome compositions of 
patients with SLE for training enabled the prediction of IBD 
with AUROCs between 0.70 and 0.90 (figure 1B, online supple-
mental figure 2). Interestingly, models trained on CRC datasets 
(CRC1; CRC2; CRC3; CRC4) demonstrated high predictive 
accuracy primarily within CRC datasets. Notably, intrastudy 
cross-validation revealed high performance across all datasets, 
with average AUROC scores ranging from 0.69 to 0.96.

Our analysis revealed common microbial species significant 
in both the IBD and SLE cohorts, especially pronounced in 
the IBD2 and SLE2 cohorts (figure 1C). We identified certain 

Figure 1  Taxonomic associations observed in metagenomic data from colorectal cancer (CRC) and autoimmune disease cohorts. (A) Each study 
charts the quantity of samples collected from both healthy and diseased individuals, with some individuals contributing multiple samples from various 
visits. (B) The area under the receiver operating characteristic curve (AUROC) for random forest models trained on the taxonomic composition from 
one cohort and used to predict labels (healthy/diseased) based on the taxonomic composition of individuals within the test cohort. For individuals 
providing multiple samples from different visits, the sample from the first visit was selected for use in both intra-cross-validation and cross-studies 
validation. Median values were calculated from multiple evaluations, encompassing both cross-study testing and fivefold cross-validation iterations. 
(C) Species with q values <0.1 in two or more studies are plotted across all studies. Asterisks represent those studies in which the q value is <0.1. 
AS, ankylosing spondylitis; GD, Graves’ disease; IBD, inflammatory bowel disease; MG, myasthenia gravis; MS, multiple sclerosis; SLE, systemic lupus 
erythematosus.
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species, like Peptostreptococcus stomatis, Parvimonas micra, 
Gemella morbillorum, Fusobacterium nucleatum, Solobacte-
rium moorei and Hungatella hathewayi, as predominantly abun-
dant in patients with CRC, some of which exacerbate CRC in 
mouse models,62 63 implying a possible pathogenic role. Our 
results highlighted species such as Streptococcus oralis, Gemella 
haemolysans and Clostridium innocuum, which were more 
abundant in patients with IBD and SLE compared with controls 
(online supplemental figure 3; online supplemental table 2). In 
contrast, control groups in IBD and SLE studies exhibited higher 
abundances of certain microbial species, indicating a baseline 
microbial community composition in healthy individuals that 
is altered in autoimmune diseases. Anaerostipes hadrus was one 
of few species consistently more abundant in healthy individ-
uals compared with those with CRC (false discovery rate (FDR) 
<0.1). Importantly, Fusicatenibacter saccharivorans was more 
abundant in healthy individuals compared with patients with 
multiple diseases including IBD, SLE, GD and CRC.

Furthermore, we observed a higher abundance of species such 
as Eubacterium sp CAG_38, Gemmiger formicilis, C. leptum 
and Asaccharobacter celatus in healthy controls compared with 
patients with IBD and SLE. This finding aligns with reduced 
abundance of C. leptum in the faecal microbiota of patients 
with UC compared with healthy individuals.64 In addition, other 
studies have suggested that supplementation with butyrate, 
which is produced by C. leptum and other Clostridium cluster 
XIVa bacteria, may have therapeutic benefits in the treatment 
of IBD and other autoimmune diseases.65 However, while these 
models elucidate taxonomic-level commonalities between SLE 
and IBD, they fall short of explaining the underlying mecha-
nisms of these relationships.

Microbial functions predict autoimmune disease
Microbial functions that have been thus far shown to exert influ-
ence on the immune system and alter the pathogenesis of auto-
immune disease include metabolism, production of bacteriocins, 
modification of host structures/enzymes, gene regulation, 
competition between microbiota and host for nutrients and/or 
space and the synthesis of secondary metabolites (eg, organic 
acids, bile acids).66 67 To predict microbial gene families that asso-
ciate specifically with autoimmune diseases, we first used models 
trained on the composition of protein families (PFAMs) in each 
cohort’s microbiomes (figure  2A). PFAMs provide functional 
insight into the mechanisms that may be involved in specific 
disease states. We identified key PFAMs significantly more abun-
dant in healthy controls in studies focusing on SLE and IBD, 
notably ‘PF00404; Dockerin type I domain’, ‘PF12891; Glyco-
side hydrolase family 44’ and ‘PF08672; Anaphase promoting 
complex subunit 2’ (online supplemental table 3). Both the type I 
dockerin domain and glycoside hydrolase family 44 proteins are 
important in the degradation of cellulose, suggesting a role for 
fibre degradation in maintaining intestinal health.

To examine fibre degradation more closely, we next specifi-
cally analysed carbohydrate-active enzyme (CAZymes) profiles 
(figure 2B; online supplemental table 4). We identified several 
CAZymes (ie, lipopolysaccharide N-acetylglucosaminyltrans-
ferase (GT9), peptidoglycan hydrolase (GH73)) that were 
significantly enriched in patients with multiple autoimmune 
diseases and CRC (online supplemental figure 4). This enrich-
ment suggests a potential link between these CAZymes and 
disease pathogenesis, possibly through modulation of gut 
microbiota composition and function.68 69 Additionally, genes 
encoding enzymes such as endo-α−1,4-polygalactosaminidase 

(GH114), endo-β−1,4-galactanase (GH53) and glucan endo-
1,3-β-glucosidase (GH17) were consistently more abundant in 
healthy controls within SLE and IBD datasets,70 highlighting the 
potential for CAZymes to be used as biomarkers for the diag-
nosis of autoimmune conditions like IBD and SLE.

Many species of gut bacteria produce SCFAs that act as 
anti-inflammatory signals for immune cells. Pyruvate is anti-
inflammatory and is commonly used to treat inflammatory 
conditions.71 Studies have shown that ethyl pyruvate, a deriva-
tive of pyruvate, can ameliorate various forms of inflammatory 
liver injury, suggesting its role in reducing systemic inflamma-
tion caused by the liver.72 The role of butyrate in promoting 
regulatory T cell functions contributes to the maintenance of 
gut homeostasis and the suppression of inflammation.73 Butyrate 
also influences the activity of cytotoxic T lymphocytes (CTLs). 
Contrary to enhancing the production of effector cytokines, 
butyrate has been shown to modulate CTL activity in a manner 
that reduces inflammatory responses, aligning with its broader 
anti-inflammatory effects.74 Furthermore, butyrate has been 
found to inhibit the activation of antigen-specific CD8+ T cells 
by affecting the antigen-presenting dendritic cells, leading to 
a reduction in systemic inflammation.75 Our analysis revealed 
significant variances in the abundance of SCFA-producing 
microbial enzymes between control groups and patients with 
SLE and IBD. We identified 66 enzymes related to SCFA produc-
tion, with 33 being common between the two diseases, showing 
higher levels in patient groups. Conversely, 18 enzymes, with 8 
common between SLE and IBD, were more prevalent in healthy 
controls. This pattern indicates a potential involvement of these 
enzymes in the pathogenesis of SLE and IBD (online supple-
mental table 5).

Our analysis uncovers a marked metabolic distinction between 
healthy individuals and patients with SLE and IBD, particularly 
in pyruvate and acetyl-CoA metabolism.76 77 Patients with SLE 
and IBD show an enrichment of enzymes such as pyruvate dehy-
drogenase and pyruvate kinase, shifting the metabolic focus 
towards SCFA production from pyruvate, which may influ-
ence disease progression through gut microbiota alterations. 
Similarly, acetyl-CoA metabolism in healthy controls is charac-
terised by a dominance of enzymes like citrate (Re)-synthase, 
supporting the TCA cycle, whereas patients exhibit higher levels 
of enzymes like acetate CoA-transferase, diverting acetyl-CoA 
towards acetate production, an SCFA, and potentially affecting 
microbial composition and inflammation.78 Furthermore, the 
analysis indicates specific increases in succinate dehydrogenase 
and propionyl-CoA synthetase in patients, suggesting a reori-
ented metabolism towards succinate and propionate pathways, 
implicating these SCFAs in modulating immune responses and 
inflammatory conditions.79

Importantly, since functions can be redundant across organ-
isms, they reflect an orthogonal axis for analysis. We compared 
their relative utility as training data for classifying each disease, 
using AUROC as our primary metric (figure 2C). Whereas taxo-
nomic profiles are more successful at classifying CRC status, 
gene functions (PFAMs) provided significantly more discrimi-
natory value in classifying autoimmune diseases, including SLE, 
GD, MG and AS.

Host-microbiome PPIs associated with autoimmune diseases 
capture disease pathways
We first identify human proteins that bind to microbiome 
proteins in each cohort based on their homology to proteins that 
have been experimentally shown to bind these human proteins. 
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Figure 2  Microbial functional genes and CAZymes exhibit comparable predictive performance to species for autoimmune diseases. (A) The area 
under the receiver operating characteristic curve (AUROC) for random forest models trained on the protein family abundances, determined using 
Pfam, from one cohort and used to predict labels (healthy/diseased) based on the protein family abundances of individuals within the test cohort. 
(B) AUROC for random forest models trained on the CAZyme profiles from one cohort and used to predict labels (healthy/diseased) based on the 
CAZyme profiles of individuals within the test cohort. (C) Box plot comparison of predictive performance when taxonomic or functional abundance 
profiles are used in microbiome datasets. The AUROC was estimated through a fivefold cross-validation experiment, conducted five times. Welch’s 
t-test was used to determine the statistical significance between the two approaches. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. AS, 
ankylosing spondylitis; CRC, colorectal cancer; GD, Graves’ disease; IBD, inflammatory bowel disease; MG, myasthenia gravis; MS, multiple sclerosis; 
SLE, systemic lupus erythematosus.
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Using the same methodology as we applied to train models 
on individual cohorts and test their ability to classify disease 
status of other cohorts, we recapitulated our previous findings, 
namely that there is strong predictive power across CRC cohorts 
(AUROC 0.55–0.79) and between IBD and SLE cohorts (AUROC 
0.56–0.86) (figure  3A). We identified human proteins with 
known gene disease-associated mutations using DisGeNET.80 
For the microbiome-associated disorders that we analysed, we 
found an enrichment of genes with GDAs. We found a modestly 
significant enrichment of PPIs involving human proteins with 
GDAs with autoimmune disorders in the SLE-associated and 
IBD-associated metagenomes (figure 3B). Overall, there were at 
least three times more human targets, which implicate specific 
disease pathways,40 identified in the IBD and SLE cohorts than 
any of the other diseases (figure  3C), which further suggests 

that these diseases are driven by functional components across 
different species.

The identification of recurring modules associated with auto-
immune diseases through the analysis of host-microbiome PPIs 
provides additional evidence for specific microbial mechanisms 
involved in disease pathogenesis. We annotated pathways for 
the human protein interactors using Ingenuity Pathway Anal-
ysis.81 Various immune response pathways, such as glucocor-
ticoid receptor signalling, interleukin (IL)-12 signalling, IL-13 
signalling and PI3K/AKT signalling, were found to be enriched 
in both SLE and IBD (figure  3D), suggesting common under-
lying pathophysiologies.82 On the other hand, we did not find 
any significant host-microbiome PPIs associated with AS. These 
results suggest that host-microbiome PPIs may be more specific 
to each autoimmune disease, rather than universally associated 

Figure 3  Host-microbiome PPIs provide insight into disease processes associated with IBD and SLE. (A) Area under the receiver operating 
characteristic curve (AUROC) for random forest models trained on the summed abundance of bacterial interactors which target each human protein 
interactor from one cohort and used to predict labels (healthy/diseased) based on the same information from individuals within the test cohort. 
(B) Comparison of PPI-associated genes and the percentage of these genes identified as disease-associated in DisGeNET, in relation to the predicted 
host-microbiome PPIs (HB-net) and all reviewed human proteins from Uniprot. (C) Venn diagrams showing the overlap of enriched pathways relevant 
to IBD and SLE, based on genes associated with these diseases according to DisGeNET or disease-associated PPIs (q<0.05). (D) Enriched pathways 
associated with human protein interactors identified as important features in each disease type are plotted. Only those pathways associated with 
three or more diseases are plotted in the heatmap according to their Benjamini-Hochberg-adjusted p values. Asterisks indicate Benjamini-Hochberg-
adjusted p values <0.05. Pathways known to play a role in IBD and SLE are marked in red and labelled by a hashtag and/or asterisk, respectively. The 
total number of human proteins identified as important features within each pathway are plotted according to the disease. AS, ankylosing spondylitis; 
CRC, colorectal cancer; GD, Graves’ disease; IBD, inflammatory bowel disease; MG, myasthenia gravis; MS, multiple sclerosis; PPI, protein-protein 
interaction; SLE, systemic lupus erythematosus.
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with autoimmunity. Further research is necessary to determine if 
these observations can be replicated in larger and more diverse 
cohorts.

Next, we focused our analysis on specific interactions that 
were common between SLE and IBD. Glucocorticoid receptor 
(NR3C1 in UniProt) is essential as a therapeutic target for both 
conditions, serving as the primary receptor for glucocorticoid 
hormones and analogues—often employed to suppress chronic 
inflammation in IBD and SLE. The interaction between gluco-
corticoid hormones and the NR3C1 receptor aids in regulating 
immune response and inflammation, thereby managing disease 
progression. Fang et al83 highlight the significance of NR3C1 
in the context of autoimmune disorders, emphasising its role in 
glucocorticoid resistance, a concern in the treatment of chronic 
inflammatory diseases.83 Predicted host-microbiome PPIs rele-
vant to NR3C1 were significantly associated in both IBD and 

SLE studies (SLE2: FDR <1e−4; IBD2: FDR <0.01; figure 4A). 
We identified potential PPIs between NR3C1 and a bacterial 
cluster encoding glutathione peroxidase-like peroxiredoxin 
Gpx1 (UniRef50_O59858), which was significantly enriched 
in patients with IBD and SLE (SLE2: FDR <0.1; IBD2: FDR 
<0.05). This interaction could potentially modulate the oxida-
tive stress response, thereby influencing inflammation and tissue 
damage in these conditions. Another interaction between NR3C1 
and a bacterial cluster encoding pyridoxal 5'-phosphate synthase 
subunit PdxS (UniRef50_P37527) was significantly more abun-
dant in healthy controls in IBD and SLE studies (SLE2: FDR 
<10−4; IBD2: FDR <10−3). This PPI may be important for 
vitamin B6 metabolism, which has been implicated in immune 
function and inflammation,84 suggesting a potential role of the 
microbiome in modulating disease mechanisms and therapeutic 
responses. All significant interactions (FDR <0.1) between 

Figure 4  Predicted human-microbiome PPIs linked to IBD and SLE. (A) Mapping of NR3C1-associated human-microbiome PPIs relevant to disease. 
Displayed are only those PPIs with significant associations and concurrent bacterial protein clusters linked to disease. The q values represent p values 
adjusted using the Benjamini-Hochberg (BH) method. The metagenomics datasets’ genera predicted to contain these UniProt clusters are annotated. 
(B) Mapping of CXCL8 (C-X-C motif chemokine ligand 8)-associated human-microbiome PPIs pertinent to disease. (C) HEK293T cells expressing FLAG-
NR3C1 and c-Myc-tagged controls/bacterial proteins, FLAG-NR3C1 alone or nothing were subject to co-immunoprecipitation (Co-IP) using an anti-c-
Myc Co-IP kit. Whole cell lysates and the Co-IP elutions were subject to western blot analysis using an anti-FLAG antibody to identify FLAG-NR3C1. 
(1) and (2) indicate the first and second representatives from the same UniRef50 cluster.
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bacterial proteins and NR3C1 were identified in the SLE2 and 
IBD2 cohorts. Interestingly, the direction of the enrichment for 
each bacterial protein-NR3C1 interaction was consistent between 
both SLE2 and IBD2 studies (online supplemental table 6).

The diversity of species associated with PPIs range from those 
common across various lineages to those specific to a narrow 
lineage. This variability is exemplified in the interaction of 
bacterial proteins with NR3C1, a nuclear receptor. The protein 
UniRef50_P78958, glyceraldehyde-3-phosphate dehydrogenase 
1, for example, is identified in a broad array of genera such as 
Acetivibrio, Anaerotignum, Bacteroides, Christensenella, Clos-
tridium and Tyzzerella. Likewise, UniRef50_P37527, the pyri-
doxal 5'-phosphate synthase subunit PdxS, showcases an even 
broader distribution, with its presence identified in over 80 
different genera across multiple phyla, reflecting a highly diverse 
range of microbial interactions.

IL-8, also known as CXCL8, is implicated in the inflamma-
tory processes of both IBD and SLE. In IBD, it directs neutro-
phil migration to the inflammation site in the gut, leading to 
persistent inflammation and tissue damage.85 Similarly, in SLE, 
elevated CXCL8 levels stimulate neutrophil migration to tissues, 
resulting in the characteristic inflammation and tissue damage 
seen in these patients. A meta-analysis by Mao et al86 confirms 
the increased circulating levels of CXCL8 in patients with 
SLE, reinforcing its role in the disease’s pathophysiology.86 87 
For CXCL8, significant host-microbiome PPIs were similarly 
observed in both IBD and SLE studies (SLE2: FDR <0.05; IBD2: 
FDR <0.001; IBD1: p<0.05, figure 4B). However, the scope 
of these interactions was more limited. The most notable was 
the association of the UniRef50_Q7TWW7 cluster, identified 
as adenosylhomocysteinase encoded by Alistipes sp, with IBD. 
This cluster showed significant enrichment in healthy controls 
(IBD1: p<0.01; IBD2: FDR <10−4). Whether this enzyme is 
involved in the regulation of homocysteine levels—known to be 
associated with inflammation and autoimmune diseases88—or in 
binding a protein known to play a role in autoimmune disease 
remains to be determined experimentally.

To confirm binding between NR3C1 and the predicted bacte-
rial interactors in vivo, we expressed FLAG-tagged NR3C1 and 
c-Myc-tagged bacterial proteins in HEK293T cells and performed 
a co-immunoprecipitation assay (figure 4C; online supplemental 
figure 5). For each tested UniRef50 cluster (online supplemental 
table 6), we selected 1–2 representative protein sequences from 
bacterial species detected in the gut microbiomes of patients 
with IBD and SLE for further testing. FLAG-NR3C1 clearly 
co-immunoprecipitated with both representatives of UniRef50_
P37527 (PdxS; A0A0M6WFX4; Roseburia faecis and, to a lesser 
extent, PdxS; U2KEI3; Ruminococcus callidus). Additionally, 
adenosylhomocysteinase (B0MW70; Alistipes putredinis) of 
UniRef50_Q7TWW7 and transaldolase (A0A2X4Z5B2; Klebsi-
ella oxytoca) of UniRef50_O42700 showed binding to FLAG-
NR3C1, although the signal was notably weaker than that of 
the positive control Hsp90a, a known interactor with NR3C1.89 
Interestingly, proteins GapA/N1ZEC1 from UniRef50_P78958 
and PdxS/U2KEI3 from UniRef50_P37527 exhibited smaller-
sized bands, suggesting potential proteolytic degradation of 
NR3C1 (online supplemental figure 6). These findings suggest 
that NR3C1 binds with predicted microbial interactors. Further 
experiments are warranted to determine the functional implica-
tions of these interactions.

DISCUSSION
This study offers critical insights into the role of the gut micro-
biota in autoimmune diseases. By using machine learning models 

and analysing taxonomic signatures, microbial functions and 
host-microbiome PPIs in patients with various autoimmune 
diseases, we identified shared microbial features and functional 
contributions between SLE and IBD. Although SLE and IBD 
share some clinical aspects and treatment regimens, the co-oc-
currence of these two diseases is uncommon.90 Furthermore, 
whereas UC is generally restricted to the colon, the small intes-
tinal microbiota is implicated in the pathogenesis of SLE.23 
Specifically, translocation of pathobionts causally implicated in 
SLE translocate from the small intestine to extraintestinal sites 
in the body.21 23 91 As our analysis focuses primarily on the stool 
microbiome, a proxy for large intestinal communities, we posit 
that some functions are shared between the small and large intes-
tines in patients with SLE or that residual signal from small intes-
tinal microbiota can be found within the stool.

In addition to the similarities observed between PPIs in SLE 
and IBD patient cohorts, prior work on B cell receptor reper-
toires has revealed similar increases in B cell clones in both 
SLE and CD, dominated by the IgA isotype, particularly the 
IgA1 and IgA2 subclasses.92 This suggests a mucosa-derived 
microbial contribution to the pathogenesis of both disorders. 
Importantly, a skewed immunoglobulin heavy chain variable 
region (IGHV) gene usage was observed in both disease states, 
in particular IGHV4-34 and VH4-59, which are both autore-
active, with IGHV4-34 having been demonstrated to also bind 
to gut commensal bacteria.93 In conjunction with our results on 
shared PPIs in both SLE and IBD, one could speculate that these 
interactions may contribute to the induction of similar adaptive 
immune responses. Further studies are needed to test whether 
shared adaptive immune responses (such as the IL-12-related T 
helper type 1 differentiation pathway or particular B cell clones) 
are gut microbiota-driven. On the innate immune side, subsets 
of patients with SLE and IBD share a type I interferon signature, 
which is particularly dominant in SLE and may also be aggra-
vated by gut pathobionts beyond known host genetic contribu-
tions.21 94–96

Furthermore, our findings suggest several coherent concepts 
with potential therapeutic implications. First, certain fibre-
degrading enzymes were consistently more abundant in healthy 
individuals across multiple studies, highlighting the importance 
of dietary fibre in maintaining gut health. This suggests that 
high-fibre diets or supplementation with fibre-degrading probi-
otics could help restore gut homeostasis and potentially mitigate 
autoimmune symptoms.97 98

Second, the analysis revealed significant differences in the abun-
dance of SCFA-producing microbial enzymes between healthy 
controls and autoimmune patients. SCFAs, such as butyrate, play 
crucial roles in regulating immune responses and maintaining 
intestinal health. Therapeutic approaches could include SCFA 
supplementation or promoting the growth of SCFA-producing 
bacteria through prebiotics to reduce inflammation and support 
immune regulation in autoimmune diseases.99 100

Third, the identification of key host-microbiome PPIs, partic-
ularly those involving NR3C1, reaffirms previously known 
host factors and introduces interactions identified through our 
approach that may offer additional therapeutic opportunities. 
These interactions are likely to occur in immune cells, such as 
macrophages and lymphocytes, where NR3C1 plays a critical role 
in regulating immune responses.101 The effect of these bacterial 
proteins on NR3C1-mediated gene transcription could influence 
a wide range of biological processes, including glucocorticoid 
signalling, which impacts immune cell function, inflammation 
and stress responses. Given NR3C1’s role as a multitasking tran-
scription factor, these interactions may alter the balance between 
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its anti-inflammatory and pro-inflammatory actions, potentially 
contributing to the pathogenesis or treatment of autoimmune 
diseases. For example, microbial proteins that interact with 
NR3C1 and modulate oxidative stress responses and vitamin B6 
metabolism could be targeted to enhance glucocorticoid therapy 
efficacy.

Additionally, targeting bacterial proteins that might bind to 
CXCL8 could be explored as a way to disrupt pro-inflammatory 
pathways while potentially preserving CXCL8’s role in neutro-
phil recruitment and immune response.5 87 Importantly, beyond 
potential future therapeutic opportunities, the effect of the 
human gut microbiota on otherwise well-studied host pathways 
such as those related to corticosteroids is little known and under-
stood. Few mechanistic studies support effects of the microbiota 
on glucocorticoid metabolism and functions.102 103 The find-
ings of our study imply that additional host effects from the 
gut microbiota may occur, although further mechanistic work is 
needed to solidify PPIs among bacteria and this important host 
pathway known to impact inflammatory diseases.

In conclusion, our study provides strong evidence for shared 
microbial signatures and functional alterations across different 
autoimmune diseases, highlighting the microbiome as a poten-
tial therapeutic target. We have identified specific microbial 
features, functional pathways and host-microbiome PPIs that 
warrant further investigation. This research lays a foundation for 
developing novel microbiome-based interventions, ranging from 
dietary modifications to targeted probiotics, prebiotics, faecal 
microbiota transplantation and host-microbiome PPI modula-
tion, offering new hope for the prevention and treatment of a 
broad range of autoimmune diseases.
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